Calculus!
 Topic 7

$$
7.3
$$

Gradients of curves for given values of x

Calculus 7.3:

- Gradients of curves

Function	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$
a constant	a	0
x^{n}	x^{n}	$n x^{n-1}$
a constant multiple of x^{n}	$a x^{n}$	$a n x^{n-1}$
multiple terms	$u(x)+v(x)$	$u^{\prime}(x)+v^{\prime}(x)$

Calculus 7.3:

- Gradients of curves

2 Suppose $f(x)=4 x^{3}-x$. Find:

$$
\text { a } \quad f^{\prime}(x)
$$

b $f^{\prime}(2)$
c $f^{\prime}(0)$
3 Suppose $g(x)=\frac{x^{2}+1}{x}$. Find: a $g^{\prime}(x)$
b $\quad g^{\prime}(3)$
c $g^{\prime}(-2)$

5 Consider the function $f(x)=(3 x+1)^{2}$.
a Expand the brackets of $(3 x+1)^{2}$.
b Hence find $f^{\prime}(x)$.
c Hence find the gradient of the tangent to $y=f(x)$ at the point where $x=-2$. Check your answer to cusing technology.

Calculus 7.3:

- Gradients of curves

E

EQUATIONS OF TANGENTS

Consider a curve $y=f(x)$.
If the point A has x-coordinate a, then its y-coordinate is $f(a)$, and the gradient of the tangent at A is $f^{\prime}(a)$.

The equation of the tangent is

$$
\begin{aligned}
\quad \frac{y-f(a)}{x-a} & =f^{\prime}(a) \quad \text { \{equating gradients\} } \\
\text { or } \quad y-f(a) & =f^{\prime}(a)(x-a) .
\end{aligned}
$$

Slope Intercept: $y=m x+c$

$y=y$ coordinate
$\mathrm{x}=\mathrm{x}$ coordinate $\mathrm{m}=$ slope of the line
$\mathrm{c}=$ where the line intercepts the y axis

EXERCISE 20E

1 Find the equation of the tangent to:

$$
\text { a } y=x^{2} \text { at } x=4
$$

$$
\text { b } y=x^{3} \text { at } x=-2
$$

Calculus 7.3:

- Gradients of curves

EXERCISE 20E

1 Find the equation of the tangent to:

$$
\begin{aligned}
& \text { a } y=x^{2} \text { at } x=4 \\
& \text { c } y=3 x^{-1} \text { at } x=-1 \\
& \text { e } y=x^{2}+5 x-4 \text { at } x=1 \\
& \text { g } y=x^{3}+2 x \text { at } x=0 \\
& \text { i } y=x+2 x^{-1} \text { at } x=2
\end{aligned}
$$

b $y=x^{3}$ at $x=-2$
d $y=\frac{4}{x^{3}}$ at $x=2$
f $y=2 x^{2}+5 x+3$ at $x=-2$
h $y=x^{2}+x^{-1}$ at $x=0$
j $y=\frac{x^{2}+4}{x}$ at $x=-1$
Check your answers using technology.

Calculus 7.3:

- Gradients of curves

When $x=-1, y=3(-1)^{-1}=-3$, so the point of contact is $(-1,-3)$.

$$
\text { Now } \frac{d y}{d x}=-3 x^{-2}=-\frac{3}{x^{2}},
$$

so when $x=-1, \quad \frac{d y}{d x}=-\frac{3}{(-1)^{2}}$

$$
=-3
$$

\therefore the tangent has equation $\frac{y-(-3)}{x-(-1)}=-3$

$$
\text { which is } \begin{aligned}
y+3 & =-3 x-3 \\
\text { or } \quad y & =-3 x-6
\end{aligned}
$$

Calculus 7.3:

- Gradients of curves

When $x=2, y=\frac{4}{2^{3}}=\frac{1}{2}$, so the point of contact is $\left(2, \frac{1}{2}\right)$.
Now $y=\frac{4}{x^{3}}=4 x^{-3}$,

$$
\therefore \frac{d y}{d x}=-12 x^{-4}=-\frac{12}{x^{4}}
$$

So when $x=2, \quad \frac{d y}{d x}=-\frac{12}{2^{4}}$

$$
=-\frac{12}{16}=-\frac{3}{4}
$$

\therefore the tangent has equation $\frac{y-\frac{1}{2}}{x-2}=-\frac{3}{4}$
which is $y-\frac{1}{2}=-\frac{3}{4} x+\frac{3}{2}$

$$
\text { or } \quad y=-\frac{3}{4} x+2
$$

Calculus 7.3:

- Gradients of curves

When $x=1, y=1^{2}+5(1)-4=2$, so the point of contact is $(1,2)$.

$$
\text { Now } \frac{d y}{d x}=2 x+5
$$

so when $x=1, \quad \frac{d y}{d x}=2(1)+5=7$
$\therefore \quad$ the tangent has equation $\frac{y-2}{x-1}=7$
which is $\quad y-2=7 x-7$

$$
\text { or } \quad y=7 x-5
$$

Calculus 7.3:

- Gradients of curves

When $x=-2, \quad y=2(-2)^{2}+5(-2)+3=1$, so the point of contact is $(-2,1)$.

$$
\text { Now } \frac{d y}{d x}=4 x+5
$$

so when $x=-2, \quad \frac{d y}{d x}=4(-2)+5$

$$
=-3
$$

\therefore the tangent has equation $\frac{y-1}{x-(-2)}=-3$
which is $y-1=-3(x+2)$

$$
=-3 x-6
$$

$$
\text { or } \quad y=-3 x-5
$$

Homework!

These are from the Oxford textbook (pink one!)

Work through as many as it takes to feel confident!

Remember they get harder as you go!

Exercise 6F

1 Find the equation of the tangent to the given curve at the stated point, P . Give your answers in the form $y=m x+c$.
a $y=x^{2} ; \mathrm{P}(3,9)$
b $y=2 x^{3} ; \mathrm{P}(1,2)$
c $y=6 x-x^{2} ; \mathrm{P}(2,8)$
d $y=3 x^{2}-10 ; \mathrm{P}(1,-7)$
e $y=2 x^{2}-5 x+4 ; \mathrm{P}(3,7)$
f $y=10 x-x^{3}+5 ; \mathrm{P}(2,17)$
g $y=11-2 x^{2} ; \mathrm{P}(3,-7)$
h $y=5-x^{2}+6 x ; \mathrm{P}(2,13)$
i $y=4 x^{2}-x^{3} ; \mathrm{P}(4,0)$
j $y=5 x-3 x^{2} ; \mathrm{P}(-1,-8)$
k $y=6 x^{2}-2 x^{3} ; \mathrm{P}(2,8)$
l $y=60 x-5 x^{2}+7 ; \mathrm{P}(2,107)$
m $y=\frac{1}{2} x^{4}-7 ; \mathrm{P}(4,121)$
n $y=17-3 x+5 x^{2} ; \mathrm{P}(0,17)$

- $y=2 x(5-x) ; \mathrm{P}(0,0)$
p $y=\frac{1}{4} x^{3}-4 x ; \mathrm{P}(2,-6)$
q $y=\frac{3}{4} x^{2}+3 ; \mathrm{P}(-2,6)$
r $y=\frac{2}{3} x^{3}+\frac{1}{3} ; \mathrm{P}\left(-1,-\frac{1}{3}\right)$
s $y=\frac{1}{4} x^{3}-7 x^{2}+5 ; \mathrm{P}(-2,-25)$

2 Find the equation of the tangent to the given curve at the stated point. Give your answers in the form $a x+b y+c=0$
a $y=\frac{12}{x^{2}} ;(2,3)$
b $y=5+\frac{6}{x^{3}} ;(1,11)$

