Calculus! Topic 7

7.3

Gradients of curves for given values of x

Gradients of curves

Function	f(x)	f'(x)
a constant	a	0
x^n	x^n	nx^{n-1}
a constant multiple of x^n	ax^n	anx^{n-1}
multiple terms	u(x) + v(x)	u'(x) + v'(x)

Gradients of curves

2 Suppose
$$f(x) = 4x^3 - x$$
. Find:
a $f'(x)$ b $f'(2)$ c $f'(0)$
3 Suppose $g(x) = \frac{x^2 + 1}{x}$. Find:
a $g'(x)$ b $g'(3)$ c $g'(-2)$

Gradients of curves

- 5 Consider the function $f(x) = (3x+1)^2$.
 - **a** Expand the brackets of $(3x+1)^2$.
 - **b** Hence find f'(x).
 - Hence find the gradient of the tangent to y = f(x) at the point where x = -2.

Check your answer to cusing technology.

Gradients of curves

EQUATIONS OF TANGENTS

Consider a curve y = f(x).

If the point A has x-coordinate a, then its y-coordinate is f(a), and the gradient of the tangent at A is f'(a).

The equation of the tangent is

$$\frac{y - f(a)}{x - a} = f'(a)$$
 {equating gradients}

or
$$y - f(a) = f'(a)(x - a)$$
.

Gradients of curves

Slope Intercept: y=mx+c

y = y coordinate

x = x coordinate

m = slope of the line

c = where the line intercepts the y axis

• Gradients of curves

EXERCISE 20E

- 1 Find the equation of the tangent to:
- a $y = x^2$ at x = 4

b $y = x^3$ at x = -2

Gradients of curves

EXERCISE 20E

1 Find the equation of the tangent to:

a
$$y = x^2$$
 at $x = 4$

$$y = 3x^{-1}$$
 at $x = -1$

$$y = x^2 + 5x - 4$$
 at $x = 1$

$$y = x^3 + 2x$$
 at $x = 0$

$$y = x + 2x^{-1}$$
 at $x = 2$

Check your answers using technology.

b
$$y = x^3$$
 at $x = -2$

d
$$y = \frac{4}{x^3}$$
 at $x = 2$

$$y = 2x^2 + 5x + 3$$
 at $x = -2$

h
$$y = x^2 + x^{-1}$$
 at $x = 0$

$$y = \frac{x^2 + 4}{x}$$
 at $x = -1$

Gradients of curves

490 Mathematical Studies SL (3rd edn), Chapter 20 – DIFFERENTIAL CALCULUS

C

When x = -1, $y = 3(-1)^{-1} = -3$, so the point of contact is (-1, -3).

Now
$$\frac{dy}{dx} = -3x^{-2} = -\frac{3}{x^2},$$
 so when $x = -1$,
$$\frac{dy}{dx} = -\frac{3}{(-1)^2}$$

$$= -3$$

... the tangent has equation
$$\frac{y-(-3)}{x-(-1)}=-3$$
 which is $y+3=-3x-3$ or $y=-3x-6$

Gradients of curves

C

When x = 2, $y = \frac{4}{2^3} = \frac{1}{2}$, so the point of contact is $(2, \frac{1}{2})$.

Now
$$y = \frac{4}{x^3} = 4x^{-3}$$
,

$$\therefore \frac{dy}{dx} = -12x^{-4} = -\frac{12}{x^4}$$

So when
$$x = 2$$
, $\frac{dy}{dx} = -\frac{12}{2^4}$

$$= -\frac{12}{16} = -\frac{3}{4}$$

$$\therefore \text{ the tangent has equation } \frac{y - \frac{1}{2}}{x - 2} = -\frac{3}{4}$$

which is
$$y - \frac{1}{2} = -\frac{3}{4}x + \frac{3}{2}$$

or $y = -\frac{3}{4}x + 2$

Gradients of curves

When x = 1, $y = 1^2 + 5(1) - 4 = 2$, so the point of contact is (1, 2).

Now
$$\frac{dy}{dx} = 2x + 5$$
,

so when x = 1, $\frac{dy}{dx} = 2(1) + 5 = 7$

$$\therefore \text{ the tangent has equation } \frac{y-2}{x-1} = 7$$

which is y-2=7x-7or y=7x-5

• Gradients of curves

When x = -2, $y = 2(-2)^2 + 5(-2) + 3 = 1$, so the point of contact is (-2, 1).

Now
$$\frac{dy}{dx} = 4x + 5$$
, so when $x = -2$, $\frac{dy}{dx} = 4(-2) + 5$

$$\therefore \text{ the tangent has equation } \frac{y-1}{x-(-2)} = -3$$

which is
$$y-1 = -3(x+2)$$

= $-3x-6$
or $y = -3x-5$

Homework!

These are from the Oxford textbook (pink one!)

Work through as many as it takes to feel confident!

Remember they get harder as you go!

Exercise 6F

- **1** Find the equation of the tangent to the given curve at the stated point, P. Give your answers in the form y = mx + c.
 - **a** $y = x^2$; P(3, 9)

- **b** $y = 2x^3$; P(1, 2)
- **c** $y = 6x x^2$; P(2,8) **d** $y = 3x^2 10$; P(1,-7) **e** $y = 2x^2 5x + 4$; P(3,7) **f** $y = 10x x^3 + 5$; P(2,
 - **f** y = 3x 16, 1(1, 7) **f** $y = 10x - x^3 + 5$; P(2, 17)**h** $y = 5 - x^2 + 6x$; P(2, 13)
- **g** $y = 11 2x^2$; P(3,-7) **i** $y = 4x^2 - x^3$; P(4,0)

 $y = 5x - 3x^2; P(-1, -8)$

k $y = 6x^2 - 2x^3$; P(2, 8) **m** $y = \frac{1}{2}x^4 - 7$; P(4,121)

n $y = 17 - 3x + 5x^2$; P(0, 17)

 $v = 60x - 5x^2 + 7$; P(2, 107)

- **o** y = 2x (5 x); P(0, 0) **p** $y = \frac{1}{4}x^3 4x$; P(2, -6)
- s $y = \frac{1}{4}x^3 7x^2 + 5$; P(-2,-25)
- **2** Find the equation of the tangent to the given curve at the stated point. Give your answers in the form ax + by + c = 0
 - **a** $y = \frac{12}{x^2}$; (2, 3) **b** $y = 5 + \frac{6}{x^3}$; (1, 11)